Metabotropic glutamate receptor analogues inhibit p[NH]ppG-stimulated phospholipase C activity in bovine brain coated vesicles: involvement of a pertussis toxin-sensitive G-protein.
نویسندگان
چکیده
Guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG)-stimulated phospholipase C (PLC) activity in bovine brain coated vesicles is inhibited by glutamate agonists. In the present study we show that quisqualic acid (QA), (+/-)-trans-1-aminocyclopentane-1,3-dicarboxylate (trans-ACPD), glutamic acid and ibotenic acid inhibited p[NH]ppG-stimulated PLC by 44, 41, 36 and 25% respectively. Carbachol also produced an inhibition of p[NH]ppG-stimulated PLC by 45%. The inhibition caused by trans-ACPD and QA was dose-dependent. DL-2-Amino-3-phosphonopropionic acid and (RS)-alpha-methyl-4-carboxyphenylglycine, specific antagonists of metabotropic glutamate receptors (mGluRs), abolished these inhibitory effects. trans-ACPD inhibition of p[NH]ppG-stimulated PLC was also observed in the presence of ionotropic glutamate receptor antagonists. When carbachol and QA or trans-ACPD were combined, additive inhibitory effects were observed. Preincubation of bovine brain coated vesicles with pertussis toxin abolished the inhibitory effects of mGluR analogues and carbachol on p[NH]ppG-stimulated PLC activity. The presence of Gs alpha and pertussis toxin substrates, Gi alpha and Go alpha subunits as well as PLC beta 1 in bovine brain coated vesicles has been confirmed by immunoblot. These results support the coupling of mGluRs to a PLC in an inhibitory manner through a pertussis toxin-sensitive G-protein in bovine brain coated vesicles.
منابع مشابه
Characterization of a metabotropic glutamate receptor: direct negative coupling to adenylyl cyclase and involvement of a pertussis toxin-sensitive G protein.
We have characterized a G-protein-coupled glutamate receptor in primary cultures of striatal neurons. Glutamate, quisqualate, or trans-1-aminocyclopentane-1,3-dicarboxylate inhibited by 30-40% either forskolin-stimulated cAMP production in intact cells or forskolin plus vasoactive intestinal peptide-activated adenylyl cyclase assayed in neuronal membrane preparations. These inhibitory effects w...
متن کاملComplex Involvement of Pertussis Toxin-Sensitive G Proteins in the Regulation of Type 1a Metabotropic Glutamate Receptor Signaling in Baby Hamster Kidney Cells
Previously, we demonstrated that the coupling of the metabotropic glutamate receptor mGlu1a to phosphoinositide hydrolysis is enhanced by pertussis toxin (PTX) in stably transfected baby hamster kidney cells (BHK). Here, we show that the PTX effect on agonist-stimulated [H]inositol phosphate accumulation can be resolved into two components: an immediate increase in agonist potency, and a more s...
متن کاملComplex involvement of pertussis toxin-sensitive G proteins in the regulation of type 1alpha metabotropic glutamate receptor signaling in baby hamster kidney cells.
Previously, we demonstrated that the coupling of the metabotropic glutamate receptor mGlu1alpha to phosphoinositide hydrolysis is enhanced by pertussis toxin (PTX) in stably transfected baby hamster kidney cells (BHK). Here, we show that the PTX effect on agonist-stimulated [(3)H]inositol phosphate accumulation can be resolved into two components: an immediate increase in agonist potency, and a...
متن کاملPositive and Negative Coupling of the Metabotropic Glutamate Receptors to a G Protein–activated K+ Channel, GIRK, in Xenopus Oocytes
Metabotropic glutamate receptors (mGluRs) control intracellular signaling cascades through activation of G proteins. The inwardly rectifying K+ channel, GIRK, is activated by the beta gamma subunits of G proteins and is widely expressed in the brain. We investigated whether an interaction between mGluRs and GIRK is possible, using Xenopus oocytes expressing mGluRs and a cardiac/brain subunit of...
متن کاملRegulation of the GTP-binding protein-based antilipolytic system of sheep adipocytes by growth hormone.
Chronic exposure of sheep adipose tissue to growth hormone (GH) in vitro decreases the ability of the adenosine analogue, N6-phenylisopropyladenosine (PIA), to inhibit isoprenaline-stimulated lipolysis by a mechanism which is dependent on both gene transcription and protein serine/threonine phosphorylation. The inhibition is not due to a change in ligand binding to the adenosine receptor, the a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 307 ( Pt 3) شماره
صفحات -
تاریخ انتشار 1995